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Abstract The use of the classic Henry—Michaelis—Menten (HMM) model (or sim-
ply, Michaelis—Menten model) to study the substrate and enzyme concentration depen-
dence of enzyme catalysis is a very important step in understanding many biochemical
processes, including microbial growth. Although the HMM model has been exten-
sively studied, the conditions in which the substrate concentration is not in excess
have still not been adequately defined mathematically. This lack of definition occurs
despite at the cellular and molecular levels most systems generally do not oper-
ate in a state of substrate excess. In the present work, we describe an approach
for studying enzyme reactions in which substrate concentrations are not in excess.
Our results show that the use of extent of reactions and numerical simulation of
the velocities of reaction provides an important advance in this field and furnishes
results not obtained in previous studies involving these aspects. This approach, in
association with knowledge of the rate constants, provides a direct and easy means
of examining the single substrate—enzyme profile during product formation at any
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enzyme—substrate ratio. This approach is more direct than previous models that
required the use of empirical equations with arbitrary constants.

Keywords Enzyme concentration - Enzyme kinetics - Michaelis—Menten model -
Time dependence of species concentration

1 Introduction

The Michaelis—Menten model was proposed in 1913 [1] and was mathematically
described by Briggs and Haldane [2] and recently extended to conditions beyond
the steady-state [3]. In a recent report, Bajzer and Strehler [4] discussed various
aspects of the enzyme—substrate dependence of kinetic processes involving the Henri—
Michaelis—Menten (HMM) model of enzyme action. These authors proposed a model
of enzyme action based on a quasi-steady-state condition involving a prolonged steady-
state that is achieved when the total substrate concentration is near the initial substrate
concentration and higher than the initial enzyme concentration. The importance of
understanding this system, which has also been highlighted by others [5-7], resides
in the fact that such conditions reflect what occurs in normal physiological states.
Previous investigations that have addressed this question have generally started with
the classic Michaelis—Menten equation obtained for conditions of high substrate con-
centration [8—10]. In the present study, we propose a more complete explanation of
this behavior based on a numerical simulation of the extent of reaction equations
that describe this process. This proposal, which is based on a previous approach by
our group [3], uses a fourth order Runge—Kutta method and provides very accurate
results without the need for empirical constants or functions such as usually employed
in kinetic analyses of enzyme—substrate interactions. This solution is more accurate
than previous proposals because it does not start with the Michaelis—Menten equation
which has limited applicability at a high substrate concentration. Although the results
obtained with this approach are similar to those of previous studies, they are generally
more accurate. We show that the extent of reactions can be used to obtain individual
rate constants, as previously described in detail by our group for high substrate con-
centrations [3]. These results can then be used to determine the kinetic behavior of
enzyme action at any enzyme—substrate ratio based on a numerical simulation using
the respective velocities of reaction. Overall, our findings show how the HMM model
and knowledge of the rate constants and enzyme—substrate concentrations can be used
to study kinetic behavior at high enzyme and low substrate concentrations.

2 Materials and methods
When investigating the kinetic conditions described by the HMM model using our pre-

viously described approach [3] we start with the classic representation of an enzymatic
reaction as

ki
S+E— ES%P+E (1)
k-1
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where S, E, E S and P correspond, respectively, to substrate, free enzyme, enzyme—
substrate complex and product. The time-dependence of the concentration of each
species in solution, C(¢), can be expressed by the following series of equations:

Cs(t) = cs —x1 (1) +x-1(t) (2)
Ce(t) = cg —x1(t) + x—1(1) + x2(7) 3)
Ces(t) = x1(#) — x—1 (1) — x2(1) “4)
Cp(t) = x2(1) (5)

where ¢ represents the initial concentration, x the extent of reaction (mol/L) and the
subscript indicates the corresponding direction of the process.

The velocities of reaction, expressed in terms of the extent of reaction, can be
defined as:

d
vi(t) = xc}t(’) — ki Cs())CE (1)
dx_
v = & d;(” — k_1Crs(0)
d
v (t) = x;t(”=kzcEs(r>

From Egs. (2)—(5) it follows that:

dxi(1)

vi(t) = o =ki(cs —x1(t) +x-1())(cE — x1(t) +x_1(2) + x2(2)) (6)
dx_

v () = & d;(t)=k71(x1(t)—x71(l)—x2(t)) %
d

u(t) = x;t(t)=kz(x1(t)—x_1(r>—xz(t)> ®)

Equations (6)—(8) furnish a system of differential equations that can be solved by
numerical methods such as the fourth order Runge—Kutta method [11,12]. However,
this solution requires prior knowledge of the rate constants ki, k_; and k» and of
the initial substrate and enzyme concentrations (cs and cg, respectively). With this
information in hand, we need only define the time interval for the calculation, usually
referred to in standard numerical simulation textbooks as 4 [11,12].

To facilitate comparison with the findings of Bajzer and Steller [4], we initially
simulated the kinetic behavior of the HMM model defined by Eqgs. (6)—(8) to obtain
the time-dependence of Eqs. (2)—(5), assuming that k| = k_; =k, = 1,cg = 1 and
cs varied from 1 to 10 for 4 = 2.5 x 10~*. In a second simulation, a similar calculation
was done for conditions where cg = 1 and cg varied from 1 to 10, which yielded a
substrate/enzyme ratio that ranged from 1 to 0.1.
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3 Results and discussion

Figures 1 and 2 show the results for the situation where cg = 1, c¢g varied from one
to ten and the substrate-enzyme ratio varied from one to ten. Similarly, Figs. 3 and
4 show the results for the situation where cs = 1, cg varied from 1 to 10 and the
substrate-enzyme ratio ranged from 1 to 0.1. The advantages of the present proposal
are best understood by comparing Figs. 1-4 with data in the literature. Figures la, c
and 2a, ¢ show the surface profiles of the species concentrations in Eq. (1) at distinct
reaction times and substrate ratios, as well as the contour plots of these surfaces for
cs = [So] from 1to 10 (panels b and d of Figs. 1, 2). These results were similar to those
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Fig.1 Time dependence of species concentration in the HMM model given by numerical simulation using
the 4th order Runge—Kutta method applied to Egs. (6)—(8) to obtain the time dependence of Egs. (2)—(5).
In this simulation, k; = k_1 = k» = 1, cg = | and cg (initial substrate concentration, [S,]) varied from 1
to 10 for 1 = 2.5 x 10~%. a Surface results for the time and [So] dependence of product formation ([ P]).
b Contour plots of the time dependence of product formation at distinct [S,] values. ¢ Surface results for
the time and [S,] dependence of free enzyme (E) concentration. d Contour plots of the time dependence
of free enzyme concentration at distinct [S,] values

@ Springer



148 J Math Chem (2013) 51:144-152

[S,] (moll)
(A) 05 (B)os —
0.8 0.6 L T
Su R
£ 3
try 04 £
= =
0.2 0w
W

-
=

[S,] (molfl)

e " Time(s)

0.1

0.05 0.15
Time (s)

[5,] (molil)

©

[S] (molfl)

[S] (molfl)

—
05 B,
0.1

4 0.05
00 Time (s)

Time (s)

Fig.2 Time dependence of species concentration in the HMM model obtained for the conditions described
in Fig. 1. a Surface results for the time and [S,] dependence of complex concentration ([ ES]). b Contour
plots of the time dependence of complex concentration at distinct [S, ] values. ¢ Surface results for the time
and [S,] dependence of substrate concentration ([S]). d Contour plots of the time dependence of substrate
concentration at distinct [S,] values

reported by Bajzer and Steller [4] (Fig. 1 of their report) for these conditions. However,
inspection of panels b and d of Figs. 1 and 2 for cg = 10 indicated that these results
were more coherent with the data obtained by using the omega function proposed by
Schnell and Mendoza [6] (Fig. 1). With respect to the time-dependence and shape of
the corresponding curves the procedure described by Schnell and Mendoza [6] is more
precise than previous proposals [4—8], although the approach of Bajzer and Steller [4]
is easier to apply. The time span used in these simulations is particularly suitable for
the time interval 4 in these numerical simulations and increasing this time interval
leads to an increase in the time of reaction at which the species behavior shown in
Figs. 1-4 are observed.

In this view, despite the time interval considered, it is possible to conclude that
the present results are more precise than those reported previously because instead
of starting the simulations with the kinetic equations provided by the Michaelis—
Menten equation, as is usually done, we started by using Eq. (2), introduced into
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Fig.3 Time dependence of species concentration in the HMM model given by numerical simulation using
the 4th order Runge—Kutta method applied to Egs. (6)—(8) to obtain the time dependence of Eqgs. (2)—(5).
In this simulation, k| = k_1 = k» = 1, cs = | and cg (initial enzyme concentration, [E,]) varied from
1to 10 for i = 2.5 x 10~4. a Surface results for the time and [E,] dependence of product formation ([ P]).
b Contour plots of the time dependence of product formation at distinct [ E, ] values. ¢ Surface results for
the time and [ E,, ] dependence of free enzyme concentration ([ E]). d Contour plots of the time dependence
of free enzyme concentration at distinct [ E,] values

Eq. (6), which accounts for substrate consumption based on the extent of reaction of
binding and release of the complex (x1 and x_1 in Eq. (2)). The other results in panels
b and d of Figs. 1 and 2 for cg # 10 indicate that increasing the substrate-enzyme
ratio from 1 to 10 reduced the time required to reach steady-state and the time required
for maximum complex formation (Fig. 2b). In addition, a low substrate-enzyme ratio
meant that complete enzyme complex (ES) formation in which almost all the enzyme
was bound to substrate was not reached. This in turn meant that the maximum veloc-
ities of product formation were not reached. The characteristic sigmoid profile of
product formation (Fig. 1b) reflected the rate constants and complex formation and
influenced the reciprocal behavior of the time dependence of substrate concentration
that was seen as nuances in the curves (Fig. 2d).
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Fig.4 Time dependence of species concentration in the HMM model obtained for the conditions described
in Fig. 3. a Surface results for the time and [E,] dependence of complex concentration ([E S]). b Contour
plots of the time dependence of complex concentration at distinct [ E, ] values. ¢ Surface results for the time
and [E, ] dependence of substrate concentration ([S]). d Contour plots of the time dependence of substrate
concentration at distinct [ E,, ] values

Figures 3 and 4 show the substrate-enzyme profile at higher enzyme concentrations,
where cg = 1 and cg (or initial enzyme concentration, [E,]) ranged from 1 to 10,
yielding substrate-enzyme ratios of 1 to 0.1. For [E,] = 10 (panels b and d of Figs. 3,
4) the profile for species concentrations was very similar to that reported by Bajzer and
Steller [4], indicating agreement between these two approaches, but differed markedly
from the method proposed by Kargi [5]. Another recent report to address this point [7]
provides an additional approach to this problem but is more complex than the present
proposal because it involves some considerations and equations that are not necessary
when working with extents of reaction. The proposals of Tzafriri [8] and Schnell and
Maini [9] yield results compatible with those obtained here but, like other studies, they
start with the Michaelis—Menten equation and require additional equations to correct
the errors of approximation associated with the original equation. With respect to the
other substrate-enzyme ratios analyzed in panels b and d of Figs. 3 and 4, an increase in
this ratio from 0.1to 1 ([E,] from 10 to 1) decreased the amount of £'S complex formed
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and increased the time required for maximum complex formation (Fig. 4b). Overall,
these results show that increasing the enzyme concentration enhances the rate of com-
plex formation and the amount of complex formed. Based on the analysis described
here, we believe that the use of extents of reaction (which is usually not described
in standard physicochemical textbooks) deserves more attention as an approach for
studying enzyme kinetics because of its ability to provide a complete description of
any kinetic system by numerical simulations. In addition, under constrained conditions
this approach provides suitable analytical solutions of complex processes, including
situations beyond the steady-state condition [3]. In this case, the HMM model should
be applied to enzymatic processes involving single substrate binding, as previously
proposed [3], and the experimental kinetic rate constants obtained can then be used to
determine the time dependence of the species concentration under any condition, as
shown here for the reaction velocities.

4 Conclusion

The main contribution of this study in relation to previous reports is the way in which
the species concentrations and velocities are described. Specifically, the use of extents
of reaction should provide a powerful tool for analyzing such kinetic systems since it
provides prompt access to the velocities of reaction that include the time dependence
of the species concentrations in Eq. (2). Numerical simulation can be easily done
without the need for other equations to account for additional numerical approxima-
tions. This point is particularly important because the Michaelis—Menten equation,
which has generally been the starting point in previous studies of this question, is
inadequate since it is constrained to high substrate concentrations. In other words, the
Michaelis—Menten equation is limited by the fact that it cannot provide the veloc-
ity of product formation as the substrate concentration changes with time (Eq. (2));
this can be clearly demonstrated by introducing time dependence into the Briggs and
Haldane model [2]. Although the results described here were similar to those reported
in previous studies that used different approaches, our findings provide a more accu-
rate assessment of the enzyme system involved. The use of extents of reaction can
provide a more incisive analysis of the events involved, particularly since there is no
need for empirical numerical equations.

An adequate description of the kinetic behavior of enzymatic processes under nor-
mal intracellular conditions, with a substrate concentration comparable to the enzyme
concentration, is fundamental for a better understanding of biological processes. The
usual approach for addressing this important topic is to use empirical equations and
arbitrary rate constants that simulate the enzyme—substrate concentration ratios under
any conditions. Since the parameters provided by classic kinetics generally include
the maximum velocity of reaction and the Michaelis—Menten constant (Vs and Ky,
respectively), the rate constants are not usually available. In contrast, the approach
that we have recently developed [3] allows these specific rate constants for single
substrate-enzyme binding to be obtained. Thus, for the first time, it is possible to have
direct, non-empirical access to the enzyme kinetics at a low substrate-enzyme ratio
that more realistically reflects normal physiological conditions.
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